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Abstract

Matrix formulations for the dynamic analysis of SDOF systems in frequency and time domain are presented in this

paper. The strict correspondence between both types of analysis are discussed. A study of the convergence of the re-

sponse obtained through the frequency domain is performed. This study indicates the presence of an imaginary term in

the response when the number of sampling terms in the Fourier transforms is even. A proof of the important causality

property of the response is developed and an eventual source of non-causality is indicated.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The dynamic analysis of structural systems can be

performed by time-domain (TD) and by frequency-

domain (FD) methods. TD methods stem from the unit-

impulse transfer function and the convolution integral

while FD methods stem from the complex frequency

response function through Fourier transforms (FTs).

The strict relation between both methods is a conse-

quence that the unit-impulse transfer function and the

complex-frequency response function constitute a pair

of FTs.

Venancio-Filho and Claret [1] developed a matrix

formulation for the FD analysis of SDOF systems

through the concept of implicit Fourier transform

(ImFT) or complex-frequency response matrix. Ac-

cording to this concept the direct and inverse discrete

FT’s are implicitly performed by a compact and elegant

matrix expression. Moreover, the number of sampling

intervals in the FTs, N, can be arbitrarily selected.

Conversely, in the most common fast Fourier transform

(FFT) algorithms N must be a power of 2. In this way,

with the ImFT formulation the analyst has more flexi-

bility in the selection of the number of sampling inter-

vals. It was also indicated in [1] that, when N is even, a

complex term appears in the response. In the present

paper a proof of convergence is given which indicates

that, with N increasing to infinity, the modulus of that

complex term tends to zero and the calculated response

tends to the real solution. Numerical results support

these conclusions.

Clough and Penzien [2] foresaw the great potentiali-

ties of FD methods in dynamic structural analysis. In [3]

they provide a thorough treatment of FD methods for

SDOF and MDOF systems. Lund�een and Dahlberg [4],

Karlsson [5], Kumar and Xia [6] and Hall and Beck [7]

cover other pertinent aspects of FD methods in dynamic

analysis.

The matrix formulation of the TD analysis of SDOF

systems is herein presented through the unit-impulse

response matrix. The relation between this matrix and

the complex-frequency response matrix is established

which emphasizes again the strict compatibility between
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both methods. Finally, a proof of the important cau-

sality property of the response in TD and FD methods is

presented.

Recently Mansur et al. [8] presented a very efficient

method for the FD linear and non-linear dynamic

structural analysis. The ImFT concept is employed in

order to solve the dynamic equilibrium equations in

modal coordinates, and a time segmentation technique is

used for non-linear analysis. On the other hand systems

with frequency-dependent properties, like interaction

systems (soil–structure, fluid–structure) and with hyste-

retic damping can be rigorously analyzed only by FD

methods. This is an important asset of these methods

which is not present in TD methods [8,9].

2. Matrix formulation of frequency-domain analysis

The response of a SDOF system is obtained through

a FD analysis by the ImFT concept. This concept is

expressed by the following equation [1]:

v ¼ 1

N
E�HEp ¼ 1

N
ep ð1Þ

where e is the complex-frequency response matrix. This

matrix has the physical meaning of a SDOF dynamic

flexibility matrix as it transforms the load time history

into the corresponding response time history.

In Eq. (1)

p ¼ p t0ð Þ; p t1ð Þ; p t2ð Þ; . . . ; p tnð Þ; . . . ; p tN�1ð Þf gt ð2Þ

is the vector of the excitation at the discrete time instants

tn ¼ nDt ¼ nTp=Nðn ¼ 0; 1; 2; . . . ;N � 1Þ, and

v ¼ v t0ð Þ; v t1ð Þ; v t2ð Þ; . . . ; v tnð Þ; . . . ; v tN�1ð Þf gt ð3Þ

is the vector of the response at the corresponding dis-

crete times; E and E� are ðN � NÞ matrices whose ge-

neric terms are, respectively, Emn ¼ e�imnð2p=NÞ and E�
mn ¼

eimnð2p=NÞ; H is a ðN � NÞ diagonal matrix composed with

the complex frequency response functions at the discrete

frequencies Xm ¼ mDX ¼ mð2p=TpÞ ðm ¼ 0; 1; 2; . . . ;
N � 1Þ; and Tp is the extended period. The generic term

of H is

H Xmð Þ ¼ k 1
���

� b2
m

�
þ i 2nbmð þ sgnbmkÞ

���1 ð4Þ

where k is the system stiffness; bm ¼ Xm=x ¼ mðDX=xÞ;
x is the natural frequency, n is the damping ratio; and k
is the hysteretic damping factor. The discrete frequencies

Xm must be considered in accordance with Tables 1 and

2 where the symmetry of positive and negative fre-

quencies is expressed. It is worthwhile to mention that

the complex frequency response function of Eq. (4) can

take into account viscous and hysteretic damping.

3. Matrix formulation of time-domain dynamic analysis

The TD analysis is performed through the unit-

impulse transfer function hðtÞ which is the inverse FT of

the complex-frequency transfer function HðXÞ. Then, by
definition,

h tð Þ ¼ 1

2p

Z þ1

�1
H Xð ÞeiXt dX: ð5Þ

hðtÞ is the unit-impulse response function. Its physical

interpretation is that it provides the response of a SDOF

due to a unit impulse.

The discrete form of Eq. (5) is

h tsð � trÞ ¼ hsr ¼
DX
2p

XN�1

m¼0

H Xmð ÞeiXm ts�trð Þ: ð6Þ

Taking into account that ts ¼ sDt, tr ¼ NDt, and X ¼
mDX and separating the positive and negative expo-

nents, Eq. (6) transforms into

h tsð � trÞ ¼ hsr ¼
DX
2p

XN�1

m¼0

eism
2p
N H Xmð Þe�irm2p

N : ð7Þ

Introducing now the ðN � NÞ matrices E� and E whose

generic terms are E�
sm ¼ eismð2p=NÞ and Emr ¼ e�irmð2p=NÞ,

respectively, and the ðN � NÞ diagonal matrix H defined

Table 1

Discrete frequencies (N odd)

m Xm

0 0

1 DX
2 2DX
. . . . . .

ðN � 1Þ=2 ½ðN � 1Þ=2� DX
ðN þ 1Þ=2 ½�ðN � 1Þ=2� DX
. . . . . .

N � 2 �2DX
N � 1 �DX

Table 2

Discrete frequencies (N even)

m Xm

0 0

1 DX
2 2DX
. . . . . .

ðN=2Þ � 1 ½ðN=2Þ � 1� DX
ðN=2Þ ðN=2ÞDX
ðN=2Þ þ 1 �½ðN=2Þ � 1� DX
. . . . . .

N � 2 �2DX
N � 1 �DX
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through Eq. (4) leads to the following expression for the

unit-impulse transfer matrix:

h ¼ DX
2p

E�HE: ð8Þ

The substitution of E�HE from the foregoing equation

into Eq. (1) and consideration of DXDt=2p ¼ 1=N , gives

v ¼ Dthp: ð9Þ

Eq. (9) expresses the system response obtained through a

TD analysis. The response in the generic time ts is, from
Eq. (9),

v tsð Þ ¼ Dt
XN�1

s¼0

p trð Þh tsð � trÞ: ð10Þ

Eq. (10) is the discrete form of the convolution equation

vðtÞ ¼
R t
0
pðsÞhðt � sÞds.

Comparing now Eqs. (1) and (9) and taking into

account that DXDt=2p ¼ 1=N one obtains

h ¼ 1

NDt
e ¼ 2p

DX
e: ð11Þ

Eq. (11) expresses the relation between the ImFT matrix

e (analysis in the FD domain) and the unit-impulse

transfer matrix h (analysis in the TD domain).

4. Convergence analysis

The convergence analysis is presented along two

lines. Initially, it is shown that, when N is even, there is

an complex term in the generic response vðtnÞ, and then

it is proven that this term tends to zero, when N tends to

infinity. In the sequel a proof is given that, with in-

creasing N, vðtnÞ converges to the real solution.

The generic response vðtnÞ, in the generic time tn, is
derived from Eq. (1) as

v tnð Þ ¼ 1

N

XN�1

m¼0

ei2pðmn=NÞH Xmð Þ
XN�1

n¼0

p tnð Þe�i2pðmn=NÞ: ð12Þ

Taking into account the discrete frequencies of Table 1

(N odd), the first summation ð
PN�1

m¼0Þ in Eq. (12) is a

summation of a real term (m ¼ 0) with pairs of complex

conjugates (m ¼ 1; . . . ;N � 1) whose generic pair is

Cm;�mm ¼ ei2pðmn=NÞH Xmð Þ
XN�1

n¼0

p tnð Þe�i2pðmn=NÞ ð13Þ

where the subscripts m and �mm correspond, respectively,

to positive and negative frequencies (Table 1). When Nis

even (Table 2), the term of highest order in Eq. (12) is a

complex term, CN=2, associated with the Nyquist fre-

quency, XN=2. Substituting N=2 for m in Eq. (13) leads to

the following expression

CN=2 ¼ cos npH XN=2

� �XN�1

n¼0

p tnð Þ cos np: ð14Þ

As N is even the summation in the RHS of Eq. (14) can

be developed as a summation of pairs as follows:

XN�1

n¼0

p tnð Þ cos np ¼ p t0ð Þ½ � p t1ð Þ� þ p t2ð Þ½ � p t3ð Þ�

þ � � � þ p trð Þ½ � p trþ1ð Þ�
þ � � � þ p tN�2ð Þ½ � p tN�1ð Þ�; ð15Þ

with r even. All the pairs in the previous equation can be

expressed, like the generic one, as

p trð Þ½ � p trþ1ð Þ� ¼ p trð Þ
�

� p tr

�
þ Tp

N

�
: ð16Þ

In the limit, when N tends to infinity, the following re-

sult is obtained:

lim
N!1

p trð Þ
�

� p tr

�
þ Tp

N

�
¼ p trð Þ � p trð Þ ¼ 0: ð17Þ

Therefore, when N tends to infinity, the central

complex term given by Eq. (14) tends to zero. On the

other hand it is verified that, due to the first cos np in Eq.

(14), the imaginary part of the response oscillates with

changing n. Hall and Beck [7] implicitly suggest the ex-

istence of this imaginary term when they write, after Eq.

(8) of their paper, where only the real part of H (mDx) is

used at m ¼ N=2, without any further consideration.

In order to prove that vðtn), Eq. (12), converges to the

exact solution when N tends to infinity, it is only nec-

essary to prove that the pair of complex conjugates of

highest order ðn ¼ N � 1 ¼ RÞ tends to zero when N

tends to infinity. This pair is, from Eq. (12),

CR;�R ¼ ei2pN�1
2

n
NH XR;�Rð Þ

XN�1

n¼0

pðtnÞe�i2pN�1
2

n
N : ð18Þ

When N tends to infinity the exponents in Eq. (18) tend

to i2pn. In this way this equation is transformed into

CR;�R ¼ cos npHðXR;�RÞ
XN�1

n¼0

pðtnÞcos np: ð19Þ

The modulus of the sum of the complex conjugates in

Eq. (19) is

P ¼ CR þ C�R

¼ 2 cos np
1

k 1� b2
R

� �
þ 21bR þ kð Þ2

h i1=2
2
64

3
75

�
XN�1

n¼0

pðtnÞ cos np: ð20Þ
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Considering now that the summation in this equation

tends to zero when N tends to infinity according to Eqs.

(15)–(17) and that, in face of damping, the term in

brackets is limited, even when bR ¼ 1, i.e., XR coincides

eventually with the natural frequency, P tends to zero

when N tends to infinity. Thus, it is finally proven that

vðtnÞ, Eq. (12), tends to the exact solution when N tends

to infinity.

5. Causality of the response

The causality of the response is the property that the

response at any time tis not influenced by the excitation

at all the times greater than t. With the consideration of

Eqs. (1) and (9) the causality property corresponds to

the lower triangularity of matrices e and h. In order that

h be lower triangular the load pðtrÞ (r > s) should not

contribute to the response at time ts which is equivalent

to hðts � trÞ ¼ 0 for r > s. To prove this, consider Eq. (7)

with the exponents gathered

h tsð � trÞ ¼ hsr ¼
DX
2p

XN�1

m¼0

H Xmð Þe�im r�sð Þ2pN : ð21Þ

The maximum absolute value of HðXmÞ occurs when,

eventually, Xm ¼ x. Then, from equation

H Xmð Þj jmax ¼ H xð Þj j ¼ 1

k 2n þ kð Þ : ð22Þ

Therefore the following inequality is verified:

H Xmð Þj j6 H xð Þj j: ð23Þ

Introducing this inequality into Eq. (21), the modulus

jhsrj of hsr is expressed as

hsrj j6 DX
2p

H xð Þj j
XN�1

m¼0

Zm

�����
����� ð24Þ

where

Zm ¼ e�imðr�sÞ2pN rð > sÞ: ð25Þ

Now,
P

Zm from Eq. (24) is a geometric series with ratio

Z ¼ e�iðr�sÞ2pN and it is proven in Ref. [10] that it is ab-

solutely convergent, i.e.,

1þ Z þ Z2 þ � � � þ ZN ¼ 1� ZN

1� Z
Zð 6¼ 1Þ: ð26Þ

On the other hand, from Eq. (25), ZN ¼ 1. Then, from

Eq. (26) the series
P

Zm converges to zero. In conse-

quence, from Eq. (25), the terms such as hsrðr > sÞ
converge to zero as N tends to infinity. This conclusion

proves finally the causality of the response of the TD

and FD dynamic analysis expressed, respectively, by

Eqs. (9) and (1).

In real engineering problems the actual response

must be causal and non-causalities are difficult to in-

terpret from an engineering point of view [4]. Crandall

[11] demonstrates that, for a particular case of excitation

and hysteretic damping, the response is non-causal. On

the other hand, one of the main causes of non-causal

responses is the insufficient extension of the period. Refs.

[6] and [8] propose a fair criterion to obtain an adequate

extension of the period. The extended period Tp should

be taken as

Tp ¼ a
ln 10

n
ð27Þ

where x is the natural frequency n the damping ratio

and 26 a6 4.

6. Example

The aims of the first example are (1) to verify the fairly

good convergence characteristic of the FD solution as

the number of terms in the FT’s tends to infinity; (2) to

confirm numerically the presence of a complex term in

the solution when N is even and the oscilation of its

imaginary part with changing n; (3) to indicate the very

fast convergence to zero of that imaginary term when N

tends to infinity; (4) to show that, with the ImFT for-

mulation, one can take an arbitrary number of terms in

the FT’s; (5) show that, when the extended period is in-

sufficient, there is some non-causality on the response.

An 1 DOF system with the following properties is

considered: stiffness k ¼ 16; 000 kN/m; mass m ¼ 100 kg

; damping ratio n ¼ 0:05. The system is subjected to a

versed-sine pulse with duration of 0.8 T where T is the

system natural period. The peak value of the load

variation is 100 kN.

Figs. 1–3 depict the perfectly matched responses ob-

tained by ImFT and FFT with N ¼ 32, 256 and 1024,

Fig. 1. Response with N ¼ 32. (––) real part, (- - -) imaginary

part.
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respectively. Moreover the solutions with N ¼ 256 and

above are the same which indicates the very good con-

vergence characteristics of the FD method. It is impor-

tant to observe in Fig. 1 the oscillation of the solution

imaginary part. Table 3 presents the maximum values of

the response with N from 25 to 211. The convergence to

the exact solution and the convergence to zero of the

imaginary part is fairly good. Figs. 4 and 5 display the

responses for arbitrary N ¼ 325 and 600, respectively,

and Table 4 presents the maximum values of the re-

sponse for other arbitrary N. The convergence is again

Table 3

Maximum values of the response with N ¼ 32–2048

N Real part (cm) Imaginary part (cm)

32 0.805 0.042

64 0.922 2.27 � 10�5

128 0.920 9.89 � 10�9

256 0.956 2.66 � 10�10

526 0.956 7.81 � 10�12

1024 0.956 2.28 � 10�13

2048 0.956 6.12 � 10�15

Fig. 4. Response with N ¼ 325. (––) real part, (- - -) imaginary

part.

Fig. 5. Response with N ¼ 600. (––) real part, (- - -) imaginary

part.

Table 4

Maximum values of the response with arbitrary N

N Real part (cm) Imaginary part (cm)

111 0.95 0

256 0.956 2.66 � 10�10

300 0.957 8.66 � 10�10

325 0.956 0

600 0.957 1.07 � 10�11

661 0.956 0

1050 0.957 0

1201 0.956 0

Fig. 2. Response with N ¼ 256. (––) real part, (- - -) imaginary

part.

Fig. 3. Response with N ¼ 1024. (––) real part, (- - -) imaginary

part.
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fairly good and the imaginary part, when N is odd, is

always zero.

The second example indicates that, when the ex-

tended period is inadequate, the response is non-causal.

The response of a SDOF system with natural period

T ¼ 0:20 s, damping ratio n ¼ 0:03 submitted to a short-

duration half-sine pulse with duration td ¼ 0:03 s is

displayed in Fig. 6a and b. The response in Fig. 6a,

obtained with an extended period Tp ¼ 1:46 s, calculated

according to Eq. (27), is causal. Conversely, the response

calculated with an insuficient period Tp ¼ 0:64 s is non-

causal, Fig. 6b.

7. Conclusion

Matrix formulation for FD and TD dynamic analysis

SDOF structural systems were presented. The strict

correspondence between the two types of analysis was

discussed. The convergence analysis of the response

obtained by the FD method indicated that, when N is

even, there is a complex term in the response whose

imaginary part oscillates and that, with increasing N, the

response finds to the exact one. The causality of the

response was proven and a possible source of non-cau-

sality related to the insufficient extension of the period

was pointed out. The given examples support the con-

clusions of the convergence and causality analyses.

FD domain methods are superposition methods like

mode superposition ones. These methods have the ad-

vantage over TD methods as they prevent the analysis of

vibration frequencies and mode shapes. On the other

hand the frequency truncation in FD methods corre-

sponds to the mode truncation in TD methods. From

the computational point of view one can not be dog-

matic whether one or other method is superior. The

computational efficiency depends very much upon the

problem and the preference of the analyst. Numerical

solutions in the FD through the ImFT concept are

competitive with TD ones with regard to accuracy and

computational efficiency, as indicated by the examples in

[8,9]. In conclusion, FD methods are theoretically con-

sistent and mandatory for rigorous analysis of systems

with hysteretic damping and frequency-dependent prop-

erties [8,9].
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